
1. Introduction

The paper entitled “The ubiquitous B-tree” by Comer was published in ACM
Computing Surveys in 1979 [49]. Actually, the keyword “B-tree” was standing
as a generic term for a whole family of variations, namely the B∗-tree, the
B+-tree and several other variants [111]. The title of the paper might have
seemed provocative at that time. However, it represented a big truth, which is
still valid now, because all textbooks on databases or data structures devote a
considerable number of pages to explain definitions, characteristics, and basic
procedures for searches, inserts, and deletes on B-trees. Moreover, B+-trees
are not just a theoretical notion. On the contrary, for years they have been the
de facto standard access method in all prototype and commercial relational
systems for typical transaction processing applications, although one could
observe that some quite more elegant and efficient structures have appeared
in the literature.

The 1980s were a period of wide acceptance of relational systems in the
market, but at the same time it became apparent that the relational model was
not adequate to host new emerging applications. Multimedia, CAD/CAM, geo-
graphical, medical and scientific applications are just some examples, in which
the relational model had been proven to behave poorly. Thus, the object-
oriented model and the object-relational model were proposed in the sequel.
One of the reasons for the shortcoming of the relational systems was their
inability to handle the new kinds of data with B-trees. More specifically, B-
trees were designed to handle alphanumeric (i.e., one-dimensional) data, like
integers, characters, and strings, where an ordering relation can be defined.
A number of new B-tree variations have appeared in the literature to handle
object-oriented data (see [25] for a comparative study). Mainly, these struc-
tures were aimed at hosting data of object hierarchies in a single structure.
However, these efforts had limited applicability and could not cover the re-
quirements of many new application areas.

In light of this evolution, entirely novel access methods were proposed,
evaluated, compared, and established. One of these structures, the R-tree, was
proposed by Guttman in 1984, aimed at handling geometrical data, such as
points, line segments, surfaces, volumes, and hypervolumes in high-dimensional
spaces [81]. R-trees were treated in the literature in much the same way as B-
trees. In particular, many improving variations have been proposed for various

3



4 1. Introduction

instances and environments, several novel operations have been developed for
them, and new cost models have been suggested.

It seems that due to modern demanding applications and after academia
has paved the way, the industry recently recognized the use and necessity of
R-trees. Thus, R-trees are adopted as an additional access method to han-
dle multi-dimensional data. Based on the observation that “trees have grown
everywhere” [212], we anticipate that we are in the beginning of the era of
the “ubiquitous R-tree” in an analogous manner as B-trees were considered
25 years ago. Nowadays, spatial databases and geographical information sys-
tems have been established as a mature field, spatiotemporal databases and
manipulation of moving points and trajectories are being studied extensively,
and finally image and multimedia databases able to handle new kinds of data,
such as images, voice, music, or video, are being designed and developed. An
application in all these cases should rely on R-trees as a necessary tool for data
storage and retrieval. R-tree applications cover a wide spectrum, from spatial
and temporal to image and video (multimedia) databases. The initial appli-
cation that motivated Guttman in his pioneering research was VLSI design
(i.e., how to efficiently answer whether a space is already covered by a chip).
Gradually, handling rectangles quickly found applications in geographical and,
in general, spatial data, including GIS (buildings, rivers, cities, etc.), image or
video/audio retrieval systems (similarity of objects in either original space or
high-dimensional feature space), time series and chronological databases (time
intervals are just 1D objects), and so on. Therefore, we argue that R-trees are
found everywhere.

We begin the exploration of the R-tree world with Table 1.1, which shows
all R-tree variations covered in this book. For each R-tree variation we give the
author(s), the year of publication, and the corresponding reference number. In
Table 1.2 we give the most important symbols and the corresponding descrip-
tions used throughout the book. The next section presents the structure and
basic characteristics of the original R-tree access method proposed in [81].

Table 1.1. Access methods covered in this book, ordered by year of publication.

Year Access Method Authors and References

1984 R-tree Guttman [81]
1985 Packed R-tree Roussopoulos, Leifker [199]
1987 R+-tree Sellis, Roussopoloulos, Faloutsos [211]
1989 Cell-tree Guenther [77]
1990 P-tree Jagadish, [96] (and 1993 Schiwietz [206])
1990 R∗-tree Beckmann, Kriegel, Schneider, Seeger [19]
1990 RT-tree Xu, Han, Lu [249]
1990 Sphere-tree Oosterom [164]
1992 Independent R-trees Kamel, Faloutsos [103]
1992 MX R-tree Kamel, Faloutsos [103]
1992 Supernode R-tree Kamel, Faloutsos [103]
1993 Hilbert Packed R-tree Kamel, Faloutsos [104]



1. Introduction 5

Table 1.1. Access methods covered in this book, ordered by year of publication
(continued).

Year Access Method Authors and References

1994 Hilbert R-tree Kamel, Faloutsos [105]
1994 R-link Ng, Kameda [161]
1994 TV-tree Lin, Jagadish, Faloutsos [138]
1996 QR-tree Manolopoulos, Nardelli, Papadopoulos, Proietti [146]
1996 SS-tree White, Jain [245]
1996 VAMSplit R-tree White, Jain [244]
1996 X-tree Berchtold, Keim, Kriegel [24]
1996 3D R-tree Theodoridis, Vazirgiannis, Sellis [238]
1997 Cubtree Roussopoulos, Kotidis [198]
1997 Linear Node Splitting Ang, Tan [11]
1997 S-tree Aggrawal, Wolf, Wu, Epelman [5]
1997 SR-tree Katayama, Satoh [108]
1997 STR R-tree Leutenegger, Edgington, Lopez [134]
1998 Bitemporal R-tree Kumar, Tsotras, Faloutsos [125]
1998 HR-tree Nascimento, Silva [158, 159]
1998 Optimal Node Splitting Garcia, Lopez, Leutenegger [71]
1998 R∗

a-tree Juergens, Lenz [102]
1998 STLT Chen, Choubey, Rundensteiner [42]
1998 TGS Garcia, Lopez, Leutenegger [70]
1999 GBI Choubey, Chen, Rundensteiner [47]
1999 RST-tree Saltenis, Jensen [201]
1999 2+3 R-tree Nascimento, Silva, Theodoridis [159]
2000 Branch Grafting Schrek, Chen [208]
2000 Bitmap R-tree Ang, Tan [12]
2000 TB-tree Pfoser, Jensen, Theodoridis [189]
2000 TPR-tree Saltenis, Jensen, Leutenegger, Lopez [202]
2001 aR-tree Papadias, Kanlis, Zhang, Tao [170]
2001 Box-tree Agarwal, deBerg, Gudmundsson, Hammar, Haverkort [4]
2001 Compact R-tree Huang, Lin, Lin [93]
2001 CR-tree Kim, Cha, Kwon [110]
2001 Efficient HR-tree Tao, Papadias [222]
2001 MV3R-tree Tao, Papadias [223]
2001 PPR-tree Kollios, Tsotras, Gunopulos, Delis, Hadjieleftheriou [113]
2001 RS-tree Park, Heu, Kim [184]
2001 SOM-based R-tree Oh, Feng, Kaneko, Makinouchi [162]
2001 STAR-tree Procopiuc, Agarwal, Har-Peled, [192]
2002 aP-tree Tao, Papadias, Zhang, [228]
2002 Buffer R-tree Arge, Hinrichs, Vahrenhold, Vitter, [16]
2002 cR-tree Brakatsoulas, Pfoser, Theodoridis, [32]
2002 DR-tree Lee, Chung, [133]
2002 HMM R-tree Jin, Jagadish, [100]
2002 Lazy Update R-tree Kwon, Lee, Lee, [127]
2002 Low Stabbing Number deBerg, Hammar, Overmars, Gudmundsson, [56]
2002 VCI R-tree Prabhakar, Xia, Kalashnikov, Aref, Hambrusch, [191]
2003 FNR-tree Frentzos, [67]
2003 LR-tree Bozanis, Nanopoulos, Manolopoulos, [31]
2003 OMT R-tree Lee, Lee, [131]
2003 Partitioned R-tree Bozanis, Nanopoulos, Manolopoulos, [31]
2003 Q+R-tree Xia, Prabhakar, [248]
2003 Seeded Clustering Lee, Moon, Lee, [132]
2003 SETI Chakka, Everspaugh, Patel, [38]
2003 TPR∗-tree Tao, Papadias, Sun, [227]
2003 TR-tree Park, Lee, [185]
2004 Merging R-trees Vasatitis, Nanopoulos, Bozanis, [240]
2004 MON-tree Almeida, Guting, [7]
2004 PR-tree Arge, deBerg, Haverkort, Yi, [15]
2004 RPPF-tree Pelanis, Saltenis, Jensen, [188]
2004 VMAT Gorawski, Malczok, [73, 74]



6 1. Introduction

Table 1.2. Basic notation used throughout the study, listed in alphabetical order.

Symbol Description

B set of buckets
Bi a bucket
b bucket capacity in bytes
c R-tree leaf node capacity
CMJJ cost of a multi-way spatial join query
CNN cost of a nearest-neighbor query
CSJ cost of a pair-wise join query
CW cost of a window query
Den density of dataset
d dataset dimensionality
E set of node entries
e, E R-tree node entry
e.mbr, E.mbr R-tree node entry MBR
f R-tree fanout (non-leaf node capacity)
FD0 Hausdorff fractal dimension
FD2 correlation fractal dimension
H Hilbert value
h R-tree height
k number of nearest neighbors
L R-tree leaf node
M maximum number of entries in an R-tree node
m minimum number of entries in an R-tree node
N number of data objects (dataset cardinality)
n total number of nodes
nl number of leaf nodes
o, O data object
o.mbr, O.mbr object minimum bounding rectangle (MBR)
oid object identifier
ptr pointer to a node
q, Q query object (point/rectangle/polygon)
q.mbr, Q.mbr query object MBR
r data object (point/rectangle/polygon)
RN R-tree node
RN.mbr R-tree node MBR
RNl R-tree leaf node
RN.type type of node (leaf or internal)
RS set of data rectangles
σ selectivity of a spatial query
σ(k) index selectivity for k-CP query
T a tree
tend interval ending time
tstart interval starting time



1.1 The Original R-tree 7

1.1 The Original R-tree

Although, nowadays the original R-tree [81] is being described in many stan-
dard textbooks and monographs on databases [130, 147, 203, 204], we briefly
recall its basic properties. R-trees are hierarchical data structures based on B+-
trees. They are used for the dynamic organization of a set of d-dimensional
geometric objects representing them by the minimum bounding d-dimensional
rectangles (for simplicity, MBRs in the sequel). Each node of the R-tree cor-
responds to the MBR that bounds its children. The leaves of the tree contain
pointers to the database objects instead of pointers to children nodes. The
nodes are implemented as disk pages.

It must be noted that the MBRs that surround different nodes may overlap
each other. Besides, an MBR can be included (in the geometrical sense) in
many nodes, but it can be associated to only one of them. This means that
a spatial search may visit many nodes before confirming the existence of a
given MBR. Also, it is easy to see that the representation of geometric objects
through their MBRs may result in false alarms. To resolve false alarms, the
candidate objects must be examined. For instance, Figure 1.1 illustrates the
case where two polygons do not intersect each other, but their MBRs do.
Therefore, the R-tree plays the role of a filtering mechanism to reduce the
costly direct examination of geometric objects.









Fig. 1.1. An example of intersecting MBRs, where the polygons do not intersect.

An R-tree of order (m,M) has the following characteristics:

– Each leaf node (unless it is the root) can host up to M entries, whereas the
minimum allowed number of entries is m ≤ M/2. Each entry is of the form
(mbr, oid), such that mbr is the MBR that spatially contains the object and
oid is the object’s identifier.

– The number of entries that each internal node can store is again between
m ≤ M/2 and M . Each entry is of the form (mbr, p), where p is a pointer to
a child of the node and mbr is the MBR that spatially contains the MBRs
contained in this child.



8 1. Introduction

– The minimum allowed number of entries in the root node is 2, unless it is a
leaf (in this case, it may contain zero or a single entry).

– All leaves of the R-tree are at the same level.
From the definition of the R-tree, it follows that it is a height-balanced tree.

As mentioned, it comprises a generalization of the B+-tree structure for many
dimensions. R-trees are dynamic data structures, i.e., global reorganization is
not required to handle insertions or deletions.

Figure 1.2 shows a set of the MBRs of some data geometric objects (not
shown). These MBRs are D, E, F, G,H, I, J,K,L,M , and N , which will be
stored at the leaf level of the R-tree. The same figure demonstrates the three
MBRs (A,B, and C) that organize the aforementioned rectangles into an in-
ternal node of the R-tree. Assuming that M = 4 and m = 2, Figure 1.3 depicts
the corresponding MBR. It is evident that several R-trees can represent the
same set of data rectangles. Each time, the resulting R-tree is determined by
the insertion (and/or deletion) order of its entries.

D

E

F

G

H

K

J

I

N

M

L

A

B

C

Fig. 1.2. An example of data MBRs and their MBRs.

A B C 

D E F G H I J K L M N 

Fig. 1.3. The corresponding R-tree.

Let an R-tree store N data rectangles. In this case the maximum value for
its height h is:



1.1 The Original R-tree 9

hmax = "logm N# − 1 (1.1)

The maximum number of nodes can be derived by summing the maximum
possible number of nodes per level. This number comes up when all nodes
contain the minimum allowed number of entries, i.e., m. Therefore, it results
that the maximum number of nodes in an R-tree is equal to:

hmax∑

i=1

"N/mi# = "N/m#+ "N/m2#+ . . . + 1

Given a rectangle, Q, we can form the following query: find all data rectan-
gles that are intersected by Q. This is denoted as a range (or window) query.
The algorithm that processes range queries in an R-tree is given in Figure 1.4.
For a node entry E, E.mbr denotes the corresponding MBR and E.p the cor-
responding pointer to the next level. If the node is a leaf, then E.p denotes
the corresponding object identifier (oid).

Algorithm RangeSearch(TypeNode RN , TypeRegion Q)
/* Finds all rectangles that are stored in an R-tree with root node RN , which are
intersected by a query rectangle Q. Answers are stored in the set A */

1. if RN is not a leaf node
2. examine each entry e of RN to find those e.mbr that intersect Q
3. foreach such entry e call RangeSearch(e.ptr,Q)
4. else // RN is a leaf node
5. examine all entries e and find those for which e.mbr intersects Q
6. add these entries to the answer set A
7. endif

Fig. 1.4. The R-tree range search algorithm.

We note that the rectangles that are found by range searching constitute
the candidates of the filtering step. The actual geometric objects intersected
by the query rectangle have to be found in a refinement step by retrieving the
objects of the candidate rectangles and testing their intersection.

Insertions in an R-tree are handled similarly to insertions in a B+-tree. In
particular, the R-tree is traversed to locate an appropriate leaf to accommodate
the new entry. The entry is inserted in the found leaf and, then all nodes within
the path from the root to that leaf are updated accordingly. In case the found
leaf cannot accommodate the new entry because it is full (it already contains
M entries), then it is split into two nodes. Splitting in R-trees is different from
that of the B+- tree, because it considers different criteria. The algorithm for
inserting a new data rectangle in an R-tree is presented in Figure 1.5.

The aforementioned insertion algorithm uses the so-called linear split al-
gorithm (it has linear time complexity). The objective of a split algorithm is
to minimize the probability of invoking both created nodes (L1 and L2) for



10 1. Introduction

Algorithm Insert(TypeEntry E, TypeNode RN)
/* Inserts a new entry E in an R-tree with root node RN */

1. Traverse the tree from root RN to the appropriate leaf. At each level,
select the node, L, whose MBR will require the minimum area enlargement
to cover E.mbr

2. In case of ties, select the node whose MBR has
the minimum area

3. if the selected leaf L can accommodate E
4. Insert E into L
5. Update all MBRs in the path from the root to L,

so that all of them cover E.mbr
6. else // L is already full
7. Let E be the set consisting of all L’s entries and the new entry E

Select as seeds two entries e1, e2 ∈ E , where the distance between
e1 and e2 is the maximum among all other pairs of entries from E
Form two nodes, L1 and L2, where the first contains e1 and the second e2

8. Examine the remaining members of E one by one and assign them
to L1 or L2, depending on which of the MBRs of these nodes
will require the minimum area enlargement so as to cover this entry

9. if a tie occurs
10. Assign the entry to the node whose MBR has the smaller area
11. endif
12. if a tie occurs again
13. Assign the entry to the node that contains the smaller number of entries
14. endif
15. if during the assignment of entries, there remain λ entries to be assigned

and the one node contains m− λ entries
16. Assign all the remaining entries to this node without considering

the aforementioned criteria
/* so that the node will contain at least m entries */

17. endif
18. Update the MBRs of nodes that are in the path from root to L, so as to

cover L1 and accommodate L2

19. Perform splits at the upper levels if necessary
20. In case the root has to be split, create a new root
21. Increase the height of the tree by one
22. endif

Fig. 1.5. The R-tree insertion algorithm.

the same query. The linear split algorithm tries to achieve this objective by
minimizing the total area of the two created nodes. Examples of bad and good
splits are given in Figure 1.6. In the left part of the figure, the split is bad,
because the MBRs of the resulting nodes have much larger area than that
depicted in the right part of the figure.

The linear split algorithm, however, is one of the three alternatives to han-
dle splits that were proposed by Guttman. The other two are of quadratic and
exponential complexity. These three alternatives are summarized as follows:

Linear Split. Choose two objects as seeds for the two nodes, where these ob-
jects are as far apart as possible. Then consider each remaining object in a



1.1 The Original R-tree 11

Fig. 1.6. Left: bad split; Right: good split.

random order and assign it to the node requiring the smallest enlargement
of its respective MBR.

Quadratic Split. Choose two objects as seeds for the two nodes, where these
objects if put together create as much dead space as possible (dead space
is the space that remains from the MBR if the areas of the two objects
are ignored). Then, until there are no remaining objects, insert the object
for which the difference of dead space if assigned to each of the two nodes
is maximized in the node that requires less enlargement of its respective
MBR.

Exponential Split. All possible groupings are exhaustively tested and the
best is chosen with respect to the minimization of the MBR enlargement.

Guttman suggested using the quadratic algorithm as a good compromise to
achieve reasonable retrieval performance.

Algorithm Delete(TypeEntry E, TypeNode RN)
/* Deletes an entry E from an R-tree with root node RN */

1. if RN is a leaf node
2. search all entries of RN to find E.mbr
3. else // RN is an internal node
4. Find all entries of RN that cover E.mbr
5. Follow the corresponding subtrees until the leaf L that contains E is found
6. Remove E from L
7. endif
8. Call algorithm CondenseTree(L) /* Figure 1.8 */
9. if the root has only one child /* and it is not a leaf */
10. Remove the root
11. Set as new root its only child
12. endif

Fig. 1.7. The R-tree deletion algorithm.

Regarding the deletion of an entry from an R-tree, it is performed with the
algorithm given in Figure 1.7. We note that the handling of an underflowing
node (a node with fewer than m entries) is different in the R-tree, compared



12 1. Introduction

Algorithm CondenseTree(TypeNode L)
/* Given is the leaf L from which an entry E has been deleted. If after
the deletion of E, L has fewer than m entries, then remove entirely
leaf L and reinsert all its entries. Updates are propagated upwards and
the MBRs in the path from root to L are modified (possibly become smaller) */

1. Set X = L
2. Let N be the set of nodes that are going to be removed from

the tree (initially, N is empty)
3. while X is not the root
4. Let ParentX be the father node of X
5. Let EX be the entry of ParentX that corresponds to X
6. if X contains less than m entries
7. Remove EX from ParentX

8. Insert X into N
9. endif
10. if X has not been removed
11. Adjust its corresponding MBR EX .mbr, so as to enclose

all rectangles in X /* EX .mbr may become smaller */
12. endif
13. Set X = ParentX

14. endwhile
15. Reinsert all the entries of nodes that are in the set N

Fig. 1.8. The R-tree condense algorithm.

with the case of B+-tree. In the latter, an underflowing case is handled by
merging two sibling nodes. Since B+-trees index one-dimensional data, two
sibling nodes will contain consecutive entries. However, for multi-dimensional
data, this property does not hold. Although one still may consider promising
the merging of two R-tree nodes that are stored at the same level, reinsertion
is more appealing for the following reasons:

– Reinsertion achieves the same result as merging. Additionally, the algorithm
for insertion is used. Also, as the number of disk accesses during the deletion
operation is crucial for its performance, we have to notice that the pages
required during reinsertion are available in the buffer memory, because they
were retrieved during the searching of the deleted entry.

– As described, the Insert algorithm tries to maintain the good quality of
the tree during the query operations. Therefore, it sounds reasonable to
use reinsertion, because the quality of the tree may decrease after several
deletions.

In all R-tree variants that have appeared in the literature, tree traversals
for any kind of operations are executed in exactly the same way as in the
original R-tree. Basically, the variations of R-trees differ in how they perform
splits during insertion by considering different minimization criteria instead of
the sum of the areas of the two resulting nodes.



1.2 Summary 13

1.2 Summary

The original R-tree structure proposed by Guttman in [81] aimed at efficient
management of large collections of two-dimensional rectangles in VLSI appli-
cations. The R-tree is a dynamic access method that organizes the data objects
by means of a hierarchical organization of rectangles. The structure supports
insertions, deletions, and queries and uses several heuristics to minimize the
overlapping of MBRs and reduce their size. These two properties are funda-
mental to efficient query processing, because the performance of a query is
analogous to the number of node accesses required to determine the answer.

Now, R-trees are found everywhere. Several modifications to the original
structure have been proposed to either improve its performance or adapt the
structure in a different application domain. Based on this fact, the next two
chapters are devoted to the presentation and annotation of R-tree variations.
The number of the R-tree variants is quite large, so we examine them in sev-
eral subsections, having in mind the special characteristics of the assumed
environment or application. Chapters 4 and 5 focus on query processing issues
by considering new types of queries, such as topological, directional, categori-
cal, and distance-based. Chapters 6 and 7 present the use of R-tree variations
in advanced applications such as multimedia databases, data warehousing,
and data mining. Query optimization issues are covered Chapter 8. Analytical
cost models and histogram-based techniques are described. Finally, Chapter
9 describes implementation issues concerning R-trees, such as parallelism and
concurrency control, and summarizes what is known from the literature about
prototype and commercial systems that have implemented them. The Epilogue
concludes the work and gives some directions for further investigation.




