Relational Algebra Equivalences

1. All joins and products are commutative.

- $\mathrm{Rx} \mathrm{S}=\mathrm{S} \times \mathrm{R}$
- $R \bowtie_{\theta} S=S \bowtie_{\theta} R$
- $\mathrm{R} \bowtie \mathrm{S}=\mathrm{S} \bowtie \mathrm{R}$

2. Joins and products are associative

- $(\mathrm{R} \times \mathrm{S}) \times \mathrm{T}=\mathrm{R} \times(\mathrm{S} \times \mathrm{T})$
- $\left(R \bowtie_{\theta} S\right) \bowtie_{\theta} T=R \bowtie \bowtie_{\theta}\left(S \bowtie_{\theta} T\right)$
- $(R \bowtie \triangleleft) \bowtie>T=R \bowtie(S \bowtie T)$

3. Select is commutative

- $\sigma_{\mathrm{p}}\left(\sigma_{\mathrm{q}}(\mathrm{R})\right)=\sigma_{\mathrm{q}}\left(\sigma_{\mathrm{p}}(\mathrm{R})\right)$

4. Conjunctive selects can cascade into individual selects

- $\sigma_{\mathrm{p} \& q \& \ldots \& z}(\mathrm{R})=\left(\sigma_{\mathrm{p}}\left(\sigma_{\mathrm{q} \ldots} \ldots\left(\sigma_{z}(\mathrm{R})\right) \ldots\right)\right)$

5. Successive projects can reduced to the final project.

- If list 1_{1}, list $2, \ldots$ list t_{n} are lists of attribute names and each of the list i_{i} contains listi-1, then $\Pi_{\text {list1 }}\left(\Pi_{\text {list2 }}\left(\ldots \Pi_{\text {listn }}(\mathrm{R}) \ldots\right)=\Pi_{\text {list1 }}(\mathrm{R})\right.$
- So only the last project has to be executed

6. Select and project sometimes commute

- If p involves only the attributes in projlist, then select and project commute
- $\Pi_{\text {projilist }}\left(\sigma_{\mathrm{p}}(\mathrm{R})\right)=\sigma_{\mathrm{p}}\left(\Pi_{\text {projist }}(\mathrm{R})\right)$

7. Select and join (or product) sometimes commute

- If p involves only attributes of one of the tables being joined, then select and join commute

$$
\sigma_{\mathrm{p}}(\mathrm{R} \bowtie \mathrm{~S})=\left(\sigma_{\mathrm{p}}(\mathrm{R})\right) \bowtie \mathrm{S}
$$

- Only if p refers just to R
- For p AND q, where p involves only the attributes of R and q only the attributes of S the select distributes over the join
- $\sigma_{\mathrm{p} \text { AND } q}(\mathrm{R} \bowtie \operatorname{S})=\left(\sigma_{\mathrm{p}}(\mathrm{R})\right) \infty\left(\sigma_{\mathrm{q}}(\mathrm{S})\right)$

9. Project sometimes distributes over join (or product)

- If projlist can be split into separate lists, list1 and list2, so that list1 contains only attributes of R and list2 contains only attributes of S, then
- $\quad \Pi_{\text {projlist }}(\mathrm{R} \bowtie>\mathrm{S})=\left(\Pi_{\text {list1 }}(\mathrm{R})\right) \triangleright\left(\Pi_{\text {list2 }}(\mathrm{S})\right)$

10. Union and intersection are commutative

- $R \cup S=S \cup R$
- $R \cap S=S \cap R$
- Set difference is not commutative.

11. Union and intersection are individually associative.

- $\quad(R \cup S) \cup T=R \cup(S \cup T)$
- $\quad(R \cap S) \cap T=R \cap(S \cap T)$
- Set difference is not associative

12. Select distributes over union, intersection, and difference

- $\quad \sigma_{p}(R \cup S)=\sigma_{p}(R) \cup \sigma_{p}(S)$
- $\sigma_{p}(R \cap S)=\sigma_{p}(R) \cap \sigma_{p}(S)$
- $\sigma_{p}(R-S)=\sigma_{p}(R)-\sigma_{p}(S)$

13. Project distributes over union, intersection, and difference

- $\quad \Pi_{\text {projlist }}(\mathrm{R} \cup \mathrm{S})=\left(\Pi_{\text {projlist }}(\mathrm{R})\right) \cup\left(\Pi_{\text {projlist }}(\mathrm{S})\right)$
- $\quad \Pi_{\text {projlist }}(\mathrm{R} \cap \mathrm{S})=\left(\Pi_{\text {projlist }}(\mathrm{R})\right) \cap\left(\Pi_{\text {projlist }}(\mathrm{S})\right)$
- $\quad \Pi_{\text {projlist }}(\mathrm{R}-\mathrm{S})=\left(\Pi_{\text {projlist }}(\mathrm{R})\right)-\left(\Pi_{\text {projlist }}(\mathrm{S})\right)$

14. Project is idempotent-repeating it produces the same result

- $\left.\quad \Pi_{\text {projlist }}(\mathrm{R})\left(\Pi_{\text {projlist }}(\mathrm{R})\right)=\Pi_{\text {projlist }} \mathrm{R}\right)$

15. Select is idempotent

- $\sigma_{p}\left(\sigma_{p}(\mathrm{R})\right)=\sigma_{\mathrm{p}}(\mathrm{R})$

